<span>Air pressure decreases as you move higher in the atmosphere. Think of a column of air directly over your body. ... Just as air pressure decreases with altitude, so does the density of air.</span>
Answer:
produce characteristic sets of energies, depending on the differences in energy between the excited states and ground state
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
D. the hyper-dimes
hop the helps
good luck
The reaction that has the greatest tendency to be reversed in an spontaneous redox reaction is that whose forward standard reduction potential is the lowest (mos negative) one because that means that the reversed reaction will have the highest (most positive) standard reduction potential.
So, the answer is Cr(3+) + 3e- ---> Cr(s) with Eo = -0.91 V, whose reversed reaction is Cr(s) - 3e- ---> Cr (3+) with Eo = +0.91 V.
Answer: the second option Cr(3+) + 3e- ---> Cr(s) Eo = -0.91 V
Answer:
Mom and dad have blue eyes but I have brown.
Explanation: