Answer:
Multiply 1.25 by 0.04 and divide the result obtained by 1,000
Explanation:
Given: [1 gram = 0.04 ounce, 1 liter = 1,000 milliliter]
1.25 x 0.04 = 0.05 oz
Therefore, 0.05 per 1,000 milliliter
0.05 ÷ 1,000 = 0.00005 oz
Therefore, the density of the gas is 0.00005 oz/mL
Hope this helps! :)
Well. There is the color change and the formation of bubbles.
Which pairs of matter demonstrate the laws of conservation?
The only correct ones are:
a Snowman and the melted remains of the same Snowman,
a lump of clay and the same lump broken into three pieces,
one apple and the same Apple cut into slices.
100% just had homework asking this same question got a 100% on USA TP
Answer:
Liquid
Explanation:
Earth’s core is liquid because it’s hot enough to melt iron, but only in places where the pressure is low enough
Answer:
b. 2 mol of KI in 500. g of water
Explanation:
We have to apply the colligative property of freezing point depression.
The formula is: ΔT = Kf . m . i
As the (Kf . m . i) is higher, then the freezing temperature will be lower.
i refers to the Van't Hoff factor (number of ions dissolved in the solution)
KI → K⁺ + I⁻ (i =2)
Kf is constant so, we have to search for the highest m (molality)
Molality means the moles of solute in 1kg of solvent.
The highest m is option b → 2 mol of KI / 0.5 kg = 4 mol/kg
a. 1 mol of KI / 0.5 kg = 2 mol/kg
c. 1 mol of KI / 1kg = 1 mol/kg
d. 2 mol of KI / 1kg = 2 mol/kg
1000 g = 1kg. In order to determine molality we need to convert the mass (g) of solvent to kg