We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
Answer:
Mumbai
Explanation:
Because Mumbai is a coastal city
due to high humidity,vigorous rusting damages all the iron structures
∴ rusting is a major problem in Mumbai
Molecular Geometry is the three-dimensional structure or arrangement of atoms in a molecule.
Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation:
Explanation:
Since its accelerating, the velocity vs time graph is linear
For displacement we need initial velocity (which is zero because it starts from rest) and final velocity (which is calculatee thro acceleration formula
A= (vf - vi)/t
a= vf-0/t
1.25=vf / 7
1.25*7=vf
8.75 = vf
Now for displacement plug all the values in
X = 1/2(vf-vi)/t formula
The displacement (x) is 30.625 m
For part 3, we know new displacement that is 22m , the final and initial velocities are the same so just plug in the values for same formula above
The answer is t = 5.02
Im pretty sure all the answers are correct