Tell your teacher. They'll know what to do and it's best to report it to them.
Answer:
The coordination sphere of a complex consists of <u><em>the central metal ion and the ligands bonded to it.</em></u>
Explanation:
The Coordination Compounds are sets of a central metal ion attached to a group of molecules or ions that surround it. They are also called metal complexes or simply complexes. Then they are compounds that have a central atom surrounded by a group of molecules or ions, the latter called ligands.
The central atom must have empty orbitals capable of accepting pairs of electrons, with the transition metals being the ones with the greatest tendency. Because of this, they can act as Lewis acids (electron pair acceptors). The ligands have unshared electron pairs, then acting as Lewis bases (electron pair donors).
When forming a complex, it is said that the ligands coordinate to the metal and the central metal and the ligands attached to it constitute the coordination sphere of the complex.
Finally, <u><em>the coordination sphere of a complex consists of the central metal ion and the ligands bonded to it.</em></u>
We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.