The best choice would be letter C hope this helps
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer: (Sorry, but I don't know how to calculate mass)
1. 15 N
2. 0.4921
(feet per second squared)
4. 150 N
5. 8.202 feet per second squared
Answer:
Zinc and Neon!
Explanation:
zinc is an element that is a transition metal and neon is a noble gas
Answer:
592.92 x 10³ Pa
Explanation:
Mole of ammonia required = 10 g / 17 =0 .588 moles
We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .
From the relation
PV = nRT
P x 2.5 x 10⁻³ = .588 x 8.32 x ( 273 + 30 )
P = 592.92 x 10³ Pa