This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
Answer:
one-third of its weight on Earth's surface
Explanation:
Weight of an object is = W = m*g
Gravity on Earth = g₁ = 9.8 m/s
Gravity on Mars = g₂ =
g₁
Weight of probe on earth = w₁ = m * g₁
Weight of probe on Mars = w₂ = m * g₂ -------- ( 1 )
As g₂ = g₁/3 --------- ( 2 )
Put equation (2) in equation (1)
so
Weight of probe on Mars = w₂ = m * g₁ /3
Weight of probe on Mars =
m * g₁ =
w₁
⇒Weight of probe on Mars =
Weight of probe on earth
C the third one i think good luck
Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system
I believe that this question has the following choices to
choose from:
placer deposits
fossil compaction
hydrothermal solutions
igneous processes
Actually among all, I have never encountered an ore that
formed due to fossil compaction. I suppose we can get minerals such as marble
or lime but not ores. So the answer is:
<span>fossil compaction (answer)</span>