Answer:
W = 311074.5 [J]
Explanation:
In order to solve this problem we must analyze two parts, in the first part by means of Newton's second law we can determine the acceleration of the beam, remembering that the sum of the forces is equal to the product of mass by acceleration.
∑F = m*a
F = forces acting on the beam [N]
m = mass = 425 [kg]
a = acceleration = 1.8 [m/s²]
The forces acting on the beam are the force of the crane up (positive) and the weight of the beam down (negative)
![F_{crane}-(425*9.81)= 425*1.8\\F_{crane}=4713.25 [N]](https://tex.z-dn.net/?f=F_%7Bcrane%7D-%28425%2A9.81%29%3D%20425%2A1.8%5C%5CF_%7Bcrane%7D%3D4713.25%20%5BN%5D)
Now in the second part, we use the definition of work, which is equal to the product of the force applied in the direction of displacement, that is, the product of force by distance.

where:
W = work [J]
F = force = 4713.25 [N]
d = distance = 66 [m]
![W=4713.25*66\\W=311074.5[J]](https://tex.z-dn.net/?f=W%3D4713.25%2A66%5C%5CW%3D311074.5%5BJ%5D)
Answer: A (smooth)
Thanks for using Brainly! You or your parents Vote Biden 2020.
Hope we influence your vote!
<span>Ohm's law deals with the relation between
voltage and current in an ideal conductor. It states that: Potential difference
across a conductor is proportional to the current that pass through it. It is
expressed as V=IR.
V = IR
200 = 20R
R = 10 ohms</span>
The time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds
<h3>How to calculate the time</h3>
Use the formula:
Power × time = mass × specific heat
Given mass = 1. 5kg
Specific latent heat of vaporization = 4000000 J/ Kg
Power = 2500 W
Substitute the values into the formula
Power × time = mass × specific heat
2500 × time = 1. 5 × 4000000
Make 'time' the subject
time = 1. 5 × 4000000 ÷ 2500 = 6000000 ÷ 2500 = 2400 seconds
Therefore, the time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds.
Learn more about specific latent heat of vaporization:
https://brainly.in/question/1580957
#SPJ1
Answer:
Both are aquatic animals and are hunters
Explanation: