Answer:
Yes
Explanation:
Friction is a force that opposes relative motion between systems in contact. One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction that opposes motion or attempted motion of the systems relative to each other.
Answer:
Explanation:
Calculating the exit temperature for K = 1.4
The value of
is determined via the expression:
![c_p = \frac{KR}{K_1}](https://tex.z-dn.net/?f=c_p%20%3D%20%5Cfrac%7BKR%7D%7BK_1%7D)
where ;
R = universal gas constant = ![\frac{8.314 \ J}{28.97 \ kg.K}](https://tex.z-dn.net/?f=%5Cfrac%7B8.314%20%5C%20J%7D%7B28.97%20%5C%20kg.K%7D)
k = constant = 1.4
![c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}](https://tex.z-dn.net/?f=c_p%20%3D%20%5Cfrac%7B1.4%28%5Cfrac%7B8.314%7D%7B28.97%7D%20%29%7D%7B1.4%20-1%7D)
![c_p= 1.004 \ kJ/kg.K](https://tex.z-dn.net/?f=c_p%3D%201.004%20%5C%20kJ%2Fkg.K)
The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :
------ equation(1)
we can rewrite the above equation as :
![0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}](https://tex.z-dn.net/?f=0%20%3D%20c_p%28T_1-T_2%29%2B%20%5Cfrac%7B%28v_1%5E2-v_2%5E2%29%7D%7B2%7D)
![T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}](https://tex.z-dn.net/?f=T_2%20%3DT_1%2B%20%5Cfrac%7B%28v_1%5E2-v_2%5E2%29%7D%7B2%20c_p%7D)
where:
![T_1 = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K](https://tex.z-dn.net/?f=T_1%20%20%3D%20280%20K%20%5C%5C%20%5C%5C%20v_1%20%3D%20510%20m%2Fs%20%5C%5C%20%5C%5C%20v_2%20%3D%20120%20m%2Fs%20%5C%5C%20%5C%5Cc_p%20%3D%201.0004%20%5C%20kJ%2Fkg.K)
![T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}](https://tex.z-dn.net/?f=T_2%3D%20280%2B%5Cfrac%7B%28%28510%29%5E2-%28120%29%5E2%29%7D%7B2%281.004%29%7D%20%2A%5Cfrac%7B1%7D%7B10%5E3%7D)
![T_2 = 402.36 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20402.36%20%5C%20K)
Thus, the exit temperature = 402.36 K
The exit pressure is determined by using the relation:![\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7BT_1%7D%20%3D%20%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%5E%5Cfrac%7Bk%7D%7Bk-1%7D)
![P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}](https://tex.z-dn.net/?f=P_2%3DP_1%28%5Cfrac%7BT_2%7D%7BT_1%7D%29%5E%5Cfrac%7Bk%7D%7Bk-1%7D)
![P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}](https://tex.z-dn.net/?f=P_2%20%3D%205%20%28%5Cfrac%7B402.36%7D%7B280%7D%20%29%5E%5Cfrac%7B1.4%7D%7B1.4-1%7D)
![P_2 = 17.79 \ bar](https://tex.z-dn.net/?f=P_2%20%3D%2017.79%20%5C%20bar)
Therefore, the exit pressure is 17.79 bar
Explanation:
When Joe works alone, the total number of words he typed can be given by:
Total words = (40 words per minute) x (60 minutes per hour) x (2.5 hours)
Total words = 6000 words
Now, when Joe and Mark work together, let 'y' be the number of hours for which they both work simultaneously:
Total words = Words Typed by Joe + Words Typed by Mark
6000 = {(40 words per minute) x (60 minutes per hours) x (y hours)} + {(20 words per minute) x (60 minutes per hours) x (y hours)}
6000 = 2400y + 1200y = 3600y
y = 1.67 hours = 1 hour and 40 minutes
Thus, working together simultaneously, Joe and Mark will take 1 hour and 40 minutes to complete the report.
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L