Assuming you mean temperature
Answer: The third law of thermodynamics
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
The vector B will have two components and those components will be called resultant vectors.
<h3>What is a component vector?</h3>
A component vector is a unit vector that represents a given vector in a particular direction.
A vector can be represented in x - direction and y - direction.
- x - component of the vector = Bcosθ
- y - component of the vector = Bsinθ
Thus, the vector B will have two components and those components will be called resultant vectors.
Learn more about component vectors here: brainly.com/question/13416288
#SPJ12
Here is the answer. Two sources of Earth's energy that are not produced would be Cosmic rays and Tidal Energy. Cosmic rays <span>are high-energy protons and atomic nuclei that come from outside the solar system. Whereas, tidal energy is the energy produced by both the moon (2/3) and the sun (1/3). Hope this answers your question.</span>
Answer:
Maximum height reached by the ball is 32 meters.
Explanation:
It is given that,
If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :
...........(1)
t is the time taken
s is the height attained as a function of time.
Maximum height achieved can be calculated as :


-16 t + 32 = 0
t = 2 seconds
Put the value of t in equation (1) as :

s = 32 meters
So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.