

Given :


We, have to find frequency :





Hope Helps!
Answer:
Mass of the box = 0.9433 kg
Explanation:
Mass of racket-ball
= 0.00427 kg
Velocity of racket-ball before collision
= 22.3 m/s
Velocity of racket-ball after collision with box
= -11.5 m/s
[Since ball is bouncing back, so velocity is taken negative.]
Velocity of the box before collision
= 0 m/s
<em>[Since the box is stationary, so velocity is taken zero]</em>
Velocity of box moving forward after collision
= 1.53 m/s
To find the mas of the box
.
By law of conservation of momentum we have:
Momentum before collision = Momentum after collision
This can be written as:


We can plugin the given value to find 


Adding both sides by 0.4911


Dividing both sides by 1.53.


∴
kg
Mass of the box = 0.9433 kg (Answer)
<span>C. Travel toward the beach faster</span>
Average speed =
(total distance)/(total time)
Average speed = (99+90)/(2+3)
That's (189 km) / (5 hr)
Average speed = 37.8 km/hr
To solve this problem it is necessary to apply the concepts of Work. Work is understood as the force applied to travel a determined distance, in this case the height. The force in turn can be expressed by Newton's second law as the ratio between mass and gravity, as well

Where,
m = mass
h = height
g = Gravitational constant
When it ascends to the second floor it has traveled the energy necessary to climb a height, under this logic, until the 4 floor has traveled 3 times the height h of each of the floors therefore

Replacing in our equation we have to

The correct answer is 4.