The energy is transferred throughout the rest of the metal by the moving electrons. Metals are described as
malleable (can be beaten into sheets) and ductile (can be pulled out into wires). This is because of the ability of the atoms to roll over each other into new positions without breaking the metallic bond.
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
to be in kg/mL. What you need to do first is write 22.4 kg/L over 1. Divide this by 1000 because there are 1000 mL per L. Your equation will look like 22.4 kg/L over 1 divided by 1000/1. You end up getting .0224 kg/mL.
1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure. Details about moles can be found below.
<h3>How to calculate number of moles?</h3>
The number of moles of a substance can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
At STP;
- T = 273K
- P = 1 atm
- R = 0.0821 Latm/molK
1 × 35 = n × 0.0821 × 273
35 = 22.41n
n = 35/22.41
n = 1.56mol
Therefore, 1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure.
Learn more about number of moles at: brainly.com/question/14919968
#SPJ1