Answer:
Boiling point for the solution is 100.237°C
Explanation:
We must apply colligative property of boiling point elevation
T° boiling solution - T° boiling pure solvent = Kb . m
m = molalilty (a given data)
Kb = Ebulloscopic constant (a given data)
We know that water boils at 100°C so let's replace the information in the formula.
T° boiling solution - 100°C = 0.512 °C/m . 0.464 m
T° boiliing solution = 0.512 °C/m . 0.464 m + 100°C → 100.237 °C
45 molecules of chlorine gas (Cl₂) are needed to react with 30 atoms of aluminum (Al)
The balanced equation for the reaction is given below:
2Al + 3Cl₂ —> 2AlCl₃
From the balanced equation above,
2 atoms of Al required 3 molecules of Cl₂.
With the above information, we can determine the number of molecules of Cl₂ needed to react with 30 atoms of Al. This can be obtained as follow:
From the balanced equation above,
2 atoms of Al required 3 molecules of Cl₂.
Therefore,
30 atoms of Al will require =
= 45 molecules of Cl₂.
Thus, 45 molecules of chlorine gas (Cl₂) are needed to react with 30 atoms of aluminum (Al)
Learn more: brainly.com/question/24918379
<span>Volume Percent (volume/volume%) is defined to be the ratio of the volume of solute to the volume of solution times 100%.
The acetic acid is the solute volume. The bottle of vinegar is the solution volume.
Acetic acid (28.2ml) / Vinegar(165ml) x 100% = 17.1%</span>
Answer:
It's an open system, tranfering heat through a rigid, diathermal wall and matter through an imaginary and permeable wall, and it is not at steady state.
Explanation:
- An <em>open system</em> is that that interacts with its surroundings exchanging energy and matter. In an open pan with boiling water you have an open system because steam (matter) is leaving the system, as well as heat (energy) through the pan/stove.
- A<em> boundary</em> is what separates the system from its surroundings, there are many types of boundaries, based on how they transfer energy they can be diathermal (conducting heat) or adiabatic (insulating), on their rigidity they can be rigid, flexible, imaginary or movable and based on their permeability. For the system described we have an imaginary boundary on top that is also permeable allowing matter to go out or in the system, and another wall (the stove/pan itself that is rigid and impermeable avoiding the loss of matter and diathermal, allowing the conduction of heat.
- It is said that a system is at a<em> steady state</em> when the variables that define that system remain constant over time. In an open pan, you can't fully control those variables, you'll have matter and energy scaping from it with no way to regulate it.
I hope you find interesting and useful this information! good luck!
Answer:
1.6 L
Explanation:
Using Charle's law
Given ,
V₁ = 1.5 L
V₂ = ?
T₁ = 12 °C
T₂ = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (12 + 273.15) K = 285.15 K
T₂ = (32 + 273.15) K = 305.15 K
Using above equation as:

New volume = 1.6 L