Explanation:
The initial concentrations for a mixture :
Acetic acid at equilibrium = 0.15 M
Ethanol at equilibrium = 0.15 M
Ethyl acetate at equilibrium = 0.40 M
Water at equilibrium = 0.40 M

Initially:
0.15 M 0.15 M 0.40 M 0.40 M
At equilibrium
(0.15-x)M (0.15-x) M (0.40+x) M (0.40+x) M
The equilibrium constant is given by expression
![K_c=\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3COOH][C_2H_5OH]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3CO_2C_2H_5%5D%5BH_2O%5D%7D%7B%5BCH_3COOH%5D%5BC_2H_5OH%5D%7D)

Solving for x:
x = 0.0333
The equilibrium concentrations for a mixture :
Acetic acid at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethanol at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethyl acetate at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M
Water at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M