Answer:
true
Explanation:
if there is no light it's different from when there is
Answer:
182 to 3 s.f
Explanation:
Workdone for an adiabatic process is given as
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
where γ = ratio of specific heats. For carbon dioxide, γ = 1.28
For an adiabatic process
P₁V₁ʸ = P₂V₂ʸ = K
K = P₁V₁ʸ
We need to calculate the P₁ using ideal gas equation
P₁V₁ = mRT₁
P₁ = (mRT₁/V₁)
m = 2.80 g = 0.0028 kg
R = 188.92 J/kg.K
T₁ = 27°C = 300 K
V₁ = 500 cm³ = 0.0005 m³
P₁ = (0.0028)(188.92)(300)/0.0005
P₁ = 317385.6 Pa
K = P₁V₁¹•²⁸ = (317385.6)(0.0005¹•²⁸) = 18.89
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
V₁ = 0.0005 m³
V₂ = 2.10 dm³ = 0.002 m³
1 - γ = 1 - 1.28 = - 0.28
W =
18.89 [(0.002)⁻⁰•²⁸ - (0.0005)⁻⁰•²⁸]/(-0.28)
W = -67.47 (5.698 - 8.4)
W = 182.3 = 182 to 3 s.f

where:
F - force
m - mass
a - acceleration
We transform this formula to get a:

<h2>
Answer: On December 20th, 1951 in Idaho, United States.
</h2>
The world's first experimental nuclear power plant was the Experimental Breeder Reactor Number One (EBR-I), which was built in a desert in Idaho, United States.
This reactor made history when, on December 20th, 1951, four 200-watt light bulbs were illuminated by means of atomic energy, specifically by nuclear fission reaction.