Answer:
Mass = 2.77 g
Explanation:
Given data:
Mass of HCl = 2 g
Mass of CaCl₂ produced = ?
Solution:
Chemical equation:
2HCl + Ca → CaCl₂ + H₂
Number of moles of HCl:
Number of moles = mass / molar mass
Number of moles = 2 g/ 36.5 g/mol
Number of moles = 0.05 mol
now we will compare the moles of HCl with CaCl₂.
HCl : CaCl₂
2 : 1
0.05 : 1/2×0.05 = 0.025 mol
Mass of CaCl₂:
Mass = number of moles × molar mass
Mass = 0.025 mol × 110.98 g/mol
Mass = 2.77 g
Answer:
<h3>Hlo there !! </h3>
<u>One mole of any substance contains 6.022*1023 structural units (atoms, molecules, ions, etc.). This number is known as the Avogadro constant.</u>
<u>One mole of any substance contains 6.022*1023 structural units (atoms, molecules, ions, etc.). This number is known as the Avogadro constant.So 1.04*107 mol of Al contains 1.40*107 * 6.022*1023 = 8.43*1030 structural units (in case of Al – atoms).</u>
<h3><u>8.43*1030 particles Al.</u></h3>
Explanation:
<h3>Hope this helps !!</h3>
Answer:
thats nice to know i will send Wile E. Coyote there for his supplys
Explanation:
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
Answer: Option (d) is the correct answer.
Explanation:
An equation in which electrolytes are represented in the form of ions is known as an ionic equation.
Strong electrolytes easily dissociate into their corresponding ions. Hence, they form ionic equation.
is a strong acid and
is a strong bases, therefore, both of them will dissociate into ions.
Thus, total ionic equation will be as follows.
