Answer:
Mentioned below are the required types of fire extinguishers for standard naval vessels:
- Soda Acid Fire Extinguisher
- Water Extinguisher
- Foam Extinguisher – Chemical and Mechanical
- Carbon Dioxide Extinguisher
- Dry Powder Extinguisher
Explanation:
A fire extinguisher is a functioning fire insurance gadget used to douse or control little fires, regularly in crisis circumstances. It isn't planned for use on a wild fire, for example, one which has arrived at the roof, jeopardizes the client (i.e., no way out course, smoke, blast danger, and so on.), or in any case requires the mastery of a fire unit. Ordinarily, a fire extinguisher comprises of a hand-held barrel shaped weight vessel containing an operator that can be released to stifle a fire. Fire extinguishers made with non-round and hollow weight vessels likewise exist however are less normal.
A naval vessel is a military boat (or in some cases pontoon, contingent upon arrangement) utilized by a naval force. Naval boats are separated from non military personnel delivers by development and reason. By and large, naval boats are harm versatile and furnished with weapon frameworks, however combat hardware on troop transports is light or non-existent. Naval vessel is planned fundamentally for naval fighting are named warships, rather than help (assistant boats) or shipyard activities.
Explanation:
excess air is required to ensure adequate mixing of fuel and air, avoid smoke, minimize sg in Coal burning, and to ensure maximum steam output.
Answer:
Im confused, what does this mean
Explanation:
i mean, thx lol
Answer:Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process
Explanation:
Answer:
1) 
2) 
Explanation:
For isothermal process n =1

![V_o = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.03

b) for adiabatic process
n =1.4
volume of hydraulic accumulator is given as
![V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}](https://tex.z-dn.net/?f=V_o%20%3D%5Cfrac%7B%5CDelta%20V%7D%7B%5B%5Cfrac%7Bp_o%7D%7Bp_1%7D%5D%5E%7B1%2Fn%7D%20-%5B%5Cfrac%7Bp_o%7D%7Bp_2%7D%5D%5E%7B1%2Fn%7D%7D)
![V_o = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1.4%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1.4%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.15
