Answer:
yes, but its better to drink water
Explanation:
To solve this problem, we should recall that
the change in enthalpy is calculated by subtracting the total enthalpy of the reactants
from the total enthalpy of the products:
ΔH = Total H of products – Total H of reactants
You did not insert the table in this problem, therefore I
will find other sources to find for the enthalpies of each compound.
ΔHf CO2 (g) = -393.5 kJ/mol
ΔHf CO (g) = -110.5 kJ/mol
ΔHf Fe2O3 (s) = -822.1 kJ/mol
ΔHf Fe(s) = 0.0 kJ/mol
Since the given enthalpies are still in kJ/mol, we have to
multiply that with the number of moles in the formula. Therefore solving for ΔH:
ΔH = [<span>3 mol </span><span>( − </span><span>393.5 </span>kJ/mol<span>) + 1 mol (</span>0.0
kJ/mol)<span>] − [</span><span>3 mol </span><span>( − </span><span>110.5 </span>kJ/mol<span>) + </span><span>2 mol </span><span>( − </span><span>822.1 </span>kJ/mol<span>)]</span>
ΔH = <span>795.2
kJ</span>
Answer: The new volume be if you put it in your freezer is 1.8 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

The new volume be if you put it in your freezer is 1.8 L
Answer:
35.6 liters at STP
Explanation:
The molar mass of carbon dioxide is about 44.01 g/mol. The volume of a mole of ideal gas at STP is 22.4 L, so the volume of 70.0 g will be ...
(70.0g)/(44.01 g/mol)·(22.4 L/mol) ≈ 35.6 L