Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles
We know that impulse is simply the product of Force and time:
Impulse = Force * time
Since Force has a unit of Newton or kg m/s^2 and time is in
seconds, therefore impulse can have units as:
N s
or
<span>kg m/s</span>
<h2>QUESTION:- </h2>
➜what is kepler's law??

Kepler gave the three laws or theorems of motion of the orbitals bodies

This law state that the celestial bodies revolves around the stars in elliptical orbit and star as a single focus.
Example :- Earth revolves around the Sun as assuming it as single focus
This also shows that earth revolves around the sun in elliptical orbit.

Area covered by the planet is equal in equal duration of time irrespective of the position of the planet.
It also states that Angular momentum is constant
As Angular momentum is constant it means areal velocity is also constant.

where:-
A is the area.
T is the time.
L is the angular momentum.
M is the mass of the body.

square of the time of the revolution is directly proportional to the cube of the distance between the planet and star in Astronomical unit.

where:-
T = time of revolution
a is the distance between the planet and star.

Answer:
The answer is D.
Explanation:
There is no gravity in Space so that means that it will decrease your weight but not your mass.
<h2><u><em>
Please give Brainiest</em></u></h2>