Explanation:
∆x=300 m×2
∆t=1.5 s
v=∆x/∆t → v=2×300/1.5 = 400 m/s
Answer:

Acceleration, in m/s, of such a rock fragment = 
Explanation:
According to Newton's Third Equation of motion

Where:
is the final velocity
is the initial velocity
a is the acceleration
s is the distance
In our case:

So Equation will become:

Acceleration, in m/s, of such a rock fragment = 
Energy Density = 1/2 × ε(0) × (V/d)^2
V = 100, d = 0.01, ε(0) = 8.85 x 10^-12
Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
Answer:
500 N
Explanation:
Natural bouyency will keep the diver in the same place, no matter what the mass of gfs. This means if the diver is displacing with a weight of 500 N, the upthrust will also be 500 N.