Answer:
14 ml of water
Explanation:
To find the volume you need to dilute the concentration of a solution, you should use the formula C1 x V1 = C2 x V2 in which:
C1 = initial concentration ( in this case 60 %)
V1 = initial volume ( in this case 70 ml)
C2 = Final concentration ( you want to dilute until 50 %)
V2 = final volume ( the variable you want to search)
So you need to:
1.- Isolate the variable you want to find: V2 = (C1 x V1) / C2
2.- Substitute data: V2 = (60% x 70 ml) /50 %
3.- You do the math, in this case is 84 ml.
4.- Remember that you have a initial volume of 70 ml, so the difference (84 ml - 70 ml = 14 ml) is the volume you need to add to dilute your solution.
Answer:
Dylan invested $ 600 in a savings account at a 1.6 % annual interest rate . He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually . Find, to the nearest cent, the balance in the account after 2 years. a₁ What information from the question is important ? b . How much does Dylan have in his bank account after 2 years ? Show work .
Answer:
Greenhouse gas Chemical formula Global Warming Potential, 100-year time horizon
Carbon Dioxide
Methane
Nitrous Oxide
Chlorofluorocarbon
Explanation:
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.