If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
Answer is 3. Volume= mass divided by density
Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =

- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.

Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.

Answer:
Part i)
h = 5.44 m
Part ii)
h = 3.16 m
Explanation:
Part i)
Since the ball is rolling so its total kinetic energy in this case will convert into gravitational potential energy
So we have

here we know that for spherical shell and pure rolling conditions






Part b)
If ball is not rolling and just sliding over the hill then in that case


