Answer:
Assumption: the acceleration of this bus is constant while the brake was applied.
Acceleration of this bus: approximately
.
It took the bus approximately
to come to a stop.
Explanation:
Quantities:
- Displacement of the bus:
. - Initial velocity of the bus:
. - Final velocity of the bus:
because the bus has come to a stop. - Acceleration,
: unknown, but assumed to be a constant. - Time taken,
: unknown.
Consider the following SUVAT equation:
.
On the other hand, assume that the acceleration of this bus is indeed constant. Given the initial and final velocity, the time it took for the bus to stop would be inversely proportional to the acceleration of this bus. That is:
.
Therefore, replace the quantity
with the expression
in that SUVAT equation:
.
Simplify this equation:
.
Therefore,
.
In this question, the value of
,
, and
are already known:
Substitute these quantities into this equation to find the value of
:
.
(The value of acceleration
is less than zero because the velocity of the bus was getting smaller.)
Substitute
(alongside
and
) to estimate the time required for the bus to come to a stop:
.
Answer:
the correct answer is TRUE
Hope it helps you
have a nice day
Answer: W = 0.3853 J, e = 0.052 m
Explanation: Given that,
K =285.0N/M , L = 0.230m , F = 15N , e = ?
F = Ke
15 = 285 × e
e = 15÷ 285
e =0.052 m
e + L = 0.052 + 0.230
= 0.282m ( spring new length )
Work needed to stretch the spring
W = 1/2ke2
W = 1/2 × 285 x 0.052 × 0.052
W = 0.3853 J
You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?
The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)