1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
7

How many miles must you travel to make the Earth fall the same amount?

Physics
1 answer:
Ede4ka [16]3 years ago
4 0

Let's take the analogy of the baseball pitcher a step farther. When a baseball is thrown in a straight line, we already said that the ball would fall to Earth because of gravity and atmospheric drag. Let's pretend again that there is no atmosphere, so there is no drag to slow the baseball down. Now, let's assume that the person throwing the ball throws it so fast that as the ball falls towards the Earth, it also travels so far, before falling even a little, that the Earth's surface curves away from the ball's path.

In other words, the baseball falls as it did before, but the ball is moving so fast that the curvature of the Earth becomes a factor and the Earth "falls away" from the ball. So, theoretically, if a pitcher on a 100 foot (30.48 m) high hill threw a ball straight and fast enough,the ball would circle the Earth at exactly 100 feet and hit the pitcher in the back of the head once it circled the globe! The bad news for the person throwing the ball is that the ball will be traveling at the same speed as when they threw it, which is about 8 km/s or several times faster than a rifle bullet. This would be very bad news if it came back and hit the pitcher, but we'll get to that in a minute.

You might be interested in
2. Neutrons have a ____<br> charge.<br> a. positive<br> b. negative<br> c. neutral
AnnyKZ [126]

Answer:

b. negative

Explanation:

neutrons have a negative charge and protons have a proton has a positive charge

3 0
3 years ago
Read 2 more answers
Which of the following tend to react by gaining 1 electron
Andrei [34K]
The correct answer should be C
8 0
3 years ago
Read 2 more answers
A projectile is fired with a velocity of 22 m/s at an angle of 25°. What is the vertical component of the velocity?
7nadin3 [17]

Answer:

Vertical component of velocity is 9.29 m/s

Explanation:

Given that,

Velocity of projection of a projectile, v = 22 m/s

It is fired at an angle of 22°

The horizontal component of velocity is v cosθ

The vertical component of velocity is v sinθ

So, vertical component is given by :

v_y=v\ sin(25)

v_y=22\ m/s\times\ sin(25)

v_y=9.29\ m/s

Hence, the vertical component of the velocity is 9.29 m/s

3 0
3 years ago
What determines how the plates interact at their boundaries
swat32

Answer:

Tectonic plate interactions are of three different basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.

Explanation:

Meaning the answer to your question is depending on what type of tectonic plate interaction is occurring will depend on how the plates interact.

3 0
3 years ago
Please help me with this question​
vovangra [49]

Answer:

1. 12 V

2a. R₁ = 4 Ω

2b. V₁ = 4 V

3a. A = 1.5 A

3b. R₂ = 4 Ω

4. Diagram is not complete

Explanation:

1. Determination of V

Current (I) = 2 A

Resistor (R) = 6 Ω

Voltage (V) =?

V = IR

V = 2 × 6

V = 12 V

2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:

Voltage (V) = 12 V

Current (I) = 1 A

Equivalent resistance (R) =?

V = IR

12 = 1 × R

R = 12 Ω

a. Determination of R₁

Equivalent resistance (R) = 12 Ω

Resistor 2 (R₂) = 8 Ω

Resistor 1 (R₁) =?

R = R₁ + R₂ (series arrangement)

12 = R₁ + 8

Collect like terms

12 – 8 =

4 = R₁

R₁ = 4 Ω

b. Determination of V₁

Current (I) = 1 A

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) =?

V₁ = IR₁

V₁ = 1 × 4

V₁ = 4 V

3a. Determination of the current.

Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) = 6 V

Current (I) =?

V₁ = IR₁

6 = 4 × I

Divide both side by 4

I = 6 / 4

I = 1.5 A

Thus, the ammeter (A) reading is 1.5 A

b. Determination of R₂

We'll begin by calculating the voltage cross R₂. This can be obtained as follow:

Total voltage (V) = 12 V

Voltage 1 (V₁) = 6 V

Voltage 2 (V₂) =?

V = V₁ + V₂ (series arrangement)

12 = 6 + V₂

Collect like terms

12 – 6 = V₂

6 = V₂

V₂ = 6 V

Finally, we shall determine R₂. This can be obtained as follow:

Voltage 2 (V₂) = 6 V

Current (I) = 1.5 A

Resistor 2 (R₂) =?

V₂ = IR₂

6 = 1.5 × R₂

Divide both side by 1.5

R₂ = 6 / 1.5

R₂ = 4 Ω

4. The diagram is not complete

7 0
3 years ago
Other questions:
  • Earthquake information would most likely be shown on which type of map?
    9·1 answer
  • In a physics lab, light with a wavelength of 490 nm travels in air from a laser to a photocell in a time of 17.5 ns . When a sla
    11·1 answer
  • What is the best example of rotational motion
    7·2 answers
  • How to draw a heating curve​
    13·1 answer
  • How many feet are in a mile
    8·2 answers
  • Why is it important to use the correct number of significant digits when
    14·2 answers
  • Are good conductors of heat also good conductors of electricity? Explain your answer.
    6·2 answers
  • n astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity ch
    6·1 answer
  • Can anybody help??????
    5·1 answer
  • A car traveling south is 200 kilometers from its starting point after 2 hours. What is the average velocity of the car?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!