Impulse = Ft = (m)(delta v)
delta v = change in velocity = velocity final - velocity initial.
= -22m/s - +18m/s = -40m/s.
mdeltav = (0.40kg)(-40m/s) = -16kgm/s or -16Ns.
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
Answer:
<h2> 4kg</h2>
Explanation:
Step one:
given
length of rod=2m
mass of object 1 m1=1kg
let the unknown mass be x
center of mass<em> c.m</em>= 1.6m
hence 1kg is 1.6m from the <em>c.m</em>
and x is 0.4m from the <em>c.m</em>
Taking moment about the <em>c.m</em>
<em>clockwise moment equals anticlockwise moments</em>
1*1.6=x*0.4
1.6=0.4x
divide both sides by 0.4 we have
x=1.6/0.4
x=4kg
The mass of the other object is 4kg
<span>As per the second law of thermodynamics, when the energy gets converted from one form to another in a physical or chemical change, then the energy which we get as result of change is of lower quality or usability of such energy is less.</span>