Answer:
Speed of the boat, v = 4.31 m/s
Explanation:
Given that,
Height of the bridge, h = 32 m
The model boat is 11 m from the point of impact when the key was released, d = 11 m
Firstly, we will find the time needed for the boat to get in this position using second equation of motion as :

Here, u = 0 and a = g


t = 2.55 seconds
Let v is the speed of the boat. It can be calculated as :


v = 4.31 m/s
So, the speed of the boat is 4.31 m/s. Hence, this is the required solution.
<span>The initial velocity of the bike was 1.67 (vf)m/s. This is found by evaluating 7.5/4.5 which yields the velocity per unit of time which is equivalent to initial velocity.</span>
The <span>biogenous sediment contains the remains of dead organisms such as shells and skeletons.</span>
The same braking force does work on these objects to slow them down. The work done is equal to their change in kinetic energy:
FΔx = 0.5mv²
F = force, Δx = distance traveled, m = mass, v = speed
Isolate Δx:
Δx = 0.5mv²/F
Calculate Δx for each object.
Object 1: m = 4.0kg, v = 2.0m/s
Δx = 0.5(4.0)(2.0)²/F = 8/F
Object 2: m = 1.0kg, v = 4.0m/s
Δx = 0.5(1.0)(4.0)²/F = 8/F
The two objects travel the same distance before stopping.
The acceleration of the particle at 3s is [tex]a = 6 \beta [/tex]

<h3>How to calculate acceleration </h3>

if Time is given as 3s
therefore, Acceleration is

Acceleration is

Read more about velocity:
brainly.com/question/19365526