Answer:
The weight if the block is 10Newtons
Explanation:
The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.
The weight of an object is calculated as mass of the object × its acceleration due to gravity
W = mg
Give the mass of the brick to be 1kg
g is the acceleration due to gravity = 10m/s²
Weight of the object = 1 × 10
= 10kgm/s² or 10Newtons
The average force applied to the ball= 106.7 N
Explanation:
Force is given by
f= ΔP/t
ΔP= change in momentum= m Vf- m Vi
m= mass =0.2 kg
Vf= final velocity= 12 m/s
Vi=initial velocity= -20 m/s ( negative because it is going towards the wall which is treated as negative axis)
t= time= 60 ms= 0.06 s
now ΔP= 0.2 [ 12-(-20)]
ΔP=0.2 (32)=6.4 kg m/s
now force F= ΔP/t
F= 6.4/0.06
F=106.7 N
Answer:
4. total energy
Explanation:
According to Bernoulli's principle at any two points along a streamline flow The total energy that is sum of pressure energy , Kinetic energy and potential energy of the liquid all taken in per unit volume remains constant. Therefore,
for ideal fluid flows through a pipe of variable cross section without any friction. The fluid completely fills the pipe. At any given point in the pipe, the fluid has a constant Total Energy.
The correct answer is hang glider.
A hang-glider cannot take off from low ground since it has no power. It needs to be launched from a high location, such a mountain or a hill. The major force acting on a hang-glider is gravity. The weight of the wing and the pilot together is this. The push that keeps the aerofoil flying through the air is produced by the weight. The hang-aerofoil glider's wing's form prevents it from falling to the ground like a stone. It results in lift. An area of low pressure is created by the aerofoil's acceleration of the air passing over the top of the wing. The air moving beneath the wing is compressed as the wing moves forward and downward. After then, the aerofoil is lifted up into the region of low pressure.
The air will gradually drop if it is still. A hang-glider descends at a speed of roughly 3.6 km/h (slow walking), or about 1 meter per second. A hang-glider needs to locate air coming up at the same rate as the glider is going down in order to maintain height. A hang-glider can fly along a cliff without losing height, for instance, if there is a light breeze coming straight from the sea, the air is being forced vertically upward by the cliff at 3.6 km/h, and the glider is flying over a vertical coastal cliff. The glider will begin to gain altitude in a stronger breeze.
Some hang-glider pilots equip their craft with tiny motors and propellers. They become microlights as a result and can now take off and climb from flat ground like a regular aircraft.
To learn more about hang-glider refer the link:
brainly.com/question/1365947
#SPJ9
The light waves bend as it travels from the air into the water.
This phenomenon is called refraction of light waves.