Answer:
Lens at a distance = 7.5 cm
Lens at a distance = 6.86 cm (Approx)
Explanation:
Given:
Object distance u = 12 cm
a) Focal length = 20 cm
b) Focal length = 16 cm
Computation:
a. 1/v = 1/u + 1/f
1/v = 1/20 + 1/12
v = 7.5 cm
Lens at a distance = 7.5 cm
b. 1/v = 1/u + 1/f
1/v = 1/16 + 1/12
v = 6.86 cm (Approx)
Lens at a distance = 6.86 cm (Approx)
Answer: (B) There is complete destructive interference between the incoming and reflected waves
Explanation:
For example, if you pluck a guitar the waves will travel back and forth. They consist of nodes and anti-nodes. It is created, when the wave traveling to one side and bounces of the other end and comes back. As it travels to the other side, it is reflected thus, comes back. So standing waves occurs when there is interference.
When the wave is produced, the points where the string is not moving are called nodes and where they are moving are called anti-nodes. The positions where nodes are produced, destructive interference occurs and where anti-nodes are produced, constructive interference occurs
I am a competitive figure skater. There are certain turns you can use such as a mowhawk, where you set one foot down that is facing the opposite direction from which you are gliding. There is a two foot turn, where you either go on or toes and turn backwards, or lean somewhat on your heals and turn forwards. Use your hips to help turn. And a 3 turn, which is basically a 2 foot turn on 1 foot. But remember, it takes practice, and you may fall a couple times.
It would become a type of metamorphic rock. Most likely marble
Answer:
Radius of the solenoid is 0.93 meters.
Explanation:
It is given that,
The magnetic field strength within the solenoid is given by the equation,
, t is time in seconds

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m
The electric field due to changing magnetic field is given by :

x is the distance from the axis of the solenoid
, r is the radius of the solenoid


r = 0.93 meters
So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.