Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
the length of the simple pendulum is 0.25 m.
Explanation:
Given;
mass of the air-track glider, m = 0.25 kg
spring constant, k = 9.75 N/m
let the length of the simple pendulum = L
let the frequency of the air-track glider which is equal to frequency of simple pendulum = F
The oscillation frequency of air-track glider is calculated as;

The frequency of the simple pendulum is given as;

Thus, the length of the simple pendulum is 0.25 m.
Answer: a good level of body fat can be found using your weight and height as a reference.
Explanation:
The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly