Answer:
I have for Decompostion
Explanation:
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation: AB → A + B. In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction
In order to determine the increase in boiling point of a solvent due to the presence of a solute, we use the formula:
ΔT = Kb * m * i
Here, Kb is a property of the solvent, so remains constant regardless of the solute. Moreover, because the concentration m has been fixed, this will also not be considered. In order to determine which solute will have the greatest effect, we must check i, the van't Hoff factor.
Simply stated, i is the number of ions that a substance produces when dissolved. Therefore, the solute producing the most ions will be the one causing the greatest change in boiling point temperature.
Answer:
1. Hydrogen
Explanation:
These planets contain liquid hydrogen in their interior, while the earth has liquid iron in it.
When liquid hydrogen is in tremendous pressure enviroments, the electrons that make up each atom of this element end up "jumping" to other atoms. These "jumps" allow liquid hydrogen to behave like a metal.
In addition, with the constant energy released by the nucleus of planets like Jupiter and Saturn, as well as their rotations, the liquid hydrogen receives induction of currents, giving rise to extremely powerful magnetic fields.
Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />