Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
The mineral with Mohs hardness would be scratched because the mineral with Mohs 7 hardness is stronger than the Mohs 5 mineral. Eventually, that mineral would turn into dust if you kept rubbing it.
The resultant force on the positive charge is mathematically given as
X=40N
<h3>What is the magnitude of the electrostatic force on the negative charge?</h3>
Question Parameters:
Three-point charges, two positive and one negative, each having a magnitude of 20
Generally, the -ve charge is mathematically given as

Q+=X
Therefore

X=40N
For more information on Force
brainly.com/question/26115859
Answer:
The correct option is b) In galaxy clusters
Explanation:
A type of galaxy that appear elliptical in shape and have an almost featureless and smooth image is known as the elliptical galaxy.
An elliptical galaxy is three dimensional and consists of more than one hundred trillion stars which are present in random orbits around the centre.
Elliptical galaxy is generally found in the galaxy clusters.
Answer:
1.10m/s
2.0.1m
3.5Hz
Explanation:
v=velocity, f=frequency and T=wavelength
1.v=ft
v=2x5
=10m
2.v=ft
100=1000T
divide both sides by 1000
T=0.1m
3.v=fT
25=5f
divide both sides by 5
f=5Hz