Answer:
h = 51020.40 meters
Explanation:
Speed of the rifle, v = 1000 m/s
Let h is the height gained by the bullet. It can be calculated using the conservation of energy as :


h = 51020.40 meters
So, the bullet will get up to a height of 51020.40 meters. Hence, this is the required solution.
The frictional force is given by F = μmg
<span>where μ is the coeficient of friction. </span>
<span>Work done by frictional force = Fd = μmgd </span>
<span>Kinetic energy "lost" = 1/2 mv² </span>
<span>Fd = μmgd = 1/2 mv² </span>
<span>The m's cancel μgd = v² / 2 </span>
<span>d = v² / 2μg </span>
<span>d = 8² / 2(0.41)(9.8) </span>
<span>d = 32 / (0.41)(9.8) </span>
<span>d = 7.96 </span>
<span>Player slides 8 m . </span>
<span>Note. In your other example μ = 0.46 and v = 4 m/s </span>
<span>d = v² / 2μg </span>
<span>= 4² / 2(0.46)(9.8) </span>
<span>= 8 / (0.46)(9.8) </span>
<span>= 1.77 or 1.8 m.
</span>
Hope i Helped :D
The amount of heat in the body in joule
Answer:
1.41 m/s^2
Explanation:
First of all, let's convert the two speeds from km/h to m/s:


Now we find the centripetal acceleration which is given by

where
v = 12.8 m/s is the speed
r = 140 m is the radius of the curve
Substituting values, we find

we also have a tangential acceleration, which is given by

where
t = 17.0 s
Substituting values,

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

The acceleration of the car is solved by subtracting the initial speed from the final speed then dividing the result by the elapsed time.
initial speed = 72 km/hr = 20 m/s
final speed = 0 m/s
elapsed time = 5 seconds
acceleration = (0 m/s – 20 m/s) / 5 s
acceleration = - 20m/s / 5 s
acceleration = -4 m/s^2