First of all, I is proportional V according to the Ohm's Law. R is merely a constant you need to obtain an equation. However, it is true that R changes with temperature and pressure, therefore Ohm's Law is only applicable in an invariable environment. Also this constant R is different for different materials.
So, do not get confused.
Ohm's law is not a universal law, please remember that as well. Some materials do not follow it and we call them non-ohmic conductors. I hope I helped! ^-^
Answer: It represents the whole distance traveled. Hope this helps!
Explanation:
V₁ = (1/g)₁ = Way₁ = 20(9.81)(0) = 0
V₂ (Vg)₂ = -WAy₂ = -20(9.81)(0.5) = -98.1J
The kinetic energy because the pool rotates about a fixed axis
W = VA/rA = VA/0.2 5VA
Mass momen of inertila about fixed axis which passes through point 0
I₀ = mko² = 50(0.280)² = 3.92 kg. m²
∴ The kinetic energy of the system is
T = 1/2 I₀w² + 1/2mAVA²
= 1/2(3.92)(5VA)² + 1/2 (20) VA² = 59VA²
Now that the system is at rest then T₁ = 0
Energy conservation is
T₁ +V₁ = T₂ + V₂
0+ 0 = 59VA² + (-98.1)
VA = 1.289 m/s
= 1.29 m/s
To solve the problem it is necessary to apply the equations related to the conservation of both <em>kinetic of rolling objects</em> and potential energy and the moment of inertia.
The net height from the point where it begins to roll with an inclination of 30 degrees would be



In the case of Inertia would be given by

In general, given an object of mass m, an effective radius k can be defined for an axis through its center of mass, with such a value that its moment of inertia is



Replacing in Energy conservation Equation we have that
Potential Energy = Kinetic Energy of Rolling Object




Therefore the correct answer is C.