1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
9

Suppose a straight 1.00-mm-diameter copper wire could just "float" horizontally in air because of the force due to the Earth’s m

agnetic field which is horizontal, perpendicular to the wire, and of magnitude 5.0x10-5 T. What current would the wire carry? Does the answer seem feasible? Explain briefly.
Physics
1 answer:
insens350 [35]3 years ago
8 0

To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

F_{mag}= BIL

Where,

B = Magnetic Field

I = Current

L = Length

<em>Note: F_{mag}  is a direct adaptation of the vector relation F=q \times V \times B</em>

From Newton's second law we know that the relation of Strength and weight is determined as

F_g = mg

Where,

m = Mass

g = Gravitational Acceleration

For there to be balance the two forces must be equal therefore

F_{mag} = F_g

BIL = mg

Our values are given as,

Diameter (d) = 1.0mm = 1*10^{-3}m

Radius (r) = \frac{d}{2} = \frac{1*10^{-3}}{2} = 0.5*10^{-3}m

Magnetic Field (B) = 5.0*10^{-5} T

From the relationship of density another way of expressing mass would be

\rho = \frac{m}{V} \rightarrow m = \rho V

At the same time the volume ratio for a cylinder (the shape of the wire) would be

V = \pi r^2 L \rightarrow L =Length, r= Radius

Replacing this two expression at our first equation we have that:

BIL = mg

BIL = ( \rho V)g

BIL = ( \rho \pi r^2 L)g

Re-arrange to find I

I = \frac{( \rho \pi r^2 L)g}{BL}

I = \frac{( \rho \pi r^2 )g}{B}

We have for definition that the Density of copper is 8.9*10^3 Kg/m^3, gravity acceleration is 9.8m/s^2 and the values of magnetic field (B) and the radius were previously given, then:

I = \frac{( (8.9*10^3 ) \pi (0.5*10^{-3})^2 )(9.8)}{5.0*10^{-5}}

I = 1370.05A

The current is too high to be transported which would make the case not feasible.

You might be interested in
Which statement best summarizes the advice Rudyard Kipling offers in "If"?
balandron [24]
The answer is the first option. The one about doing your best. trust me I read the book today!
3 0
3 years ago
Read 2 more answers
Help ME QUICK PLEASE QUESTION 2 AND 4 PLEASE 58 POINTS
monitta

Answer:

For number 4: A vector pointing to the right with a magnitude of 2.0

Explanation:

Very simple- just subtract 6-2

I am not sure how to do #2- sorry!

6 0
3 years ago
If the area of an iron rod is 10 cm by 0.5 cm and length is 35 cm. Find the value of resistance, if 11x10^-8 ohm.m be the resist
malfutka [58]

Answer:

Resistance of the iron rod, R = 0.000077 ohms    

Explanation:

It is given that,

Area of iron rod, A=10\ cm\times 0.5\ cm=5\ cm^2 = 0.0005\ m^2

Length of the rod, L = 35 cm = 0.35 m

Resistivity of Iron, \rho=11\times 10^{-8}\ \Omega-m

We need to find the resistance of the iron rod. It is given by :

R=\rho\dfrac{L}{A}

R=11\times 10^{-8}\times \dfrac{0.35\ m}{0.0005\ m^2}

R=0.000077 \Omega

So, the resistance of the rod is 0.000077 ohms. Hence, this is the required solution.

6 0
3 years ago
HELP WILL MARK BRAINLIEST!!
kherson [118]

Answer:15

Explanation:

8 0
3 years ago
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
3 years ago
Other questions:
  • For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off
    15·1 answer
  • Which of the following are advantages of
    10·1 answer
  • in your own words provide two advantages of using meters as a measurement of length rather than old measurements of length such
    12·1 answer
  • A student has a mass (including clothes and shoes) of 65.0 kg. She drinks a 12 oz. can of soda, with a nutritional energy conten
    13·1 answer
  • Isaiah has samples of two different elements, one metal and one nonmetal
    12·1 answer
  • One way to force air into an unconscious person's lungs is to squeeze on a balloon appropriately connected to the subject. What
    12·1 answer
  • A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal.
    9·1 answer
  • How are element and compound are alike and different?
    6·1 answer
  • In the equation for elastic potential energy below, what is represented by the symbol k? Ee = ½ × k × e²
    5·1 answer
  • Which statement accurately describes the relationship between force and momentum?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!