- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
Answer:
If the Earth absorbs more insolation from the sun than it radiates back, the Earth. warms
It would be 17 m/s
If we use
V2 = V1 + a*t
Sub in 5 for v1
2m/s*2 for a
And
6 for t
That should give you the answer.
Answer:
The energy of an electron in an isolated atom depends on b. n only.
Explanation:
The quantum number n, known as the principal quantum number represents the relative overall energy of each orbital.
The sets of orbitals with the same n value are often referred to as an electron shell, in an isolated atom all electrons in a subshell have exactly the same level of energy.
The principal quantum number comes from the solution of the Schrödinger wave equation, which describes energy in eigenstates
, and for the case of an hydrogen atom we have:

Thus for each value of n we can describe the orbital and the energy corresponding to each electron on such orbital.