Answer:
Explanation:
This is a direct application of the equation for ideal gases.
Where:
- P = pressure = 1.25 atm
- V = volume = 25.2 liter
- R = Universal constant of gases = 0.08206 atm-liter/K-mol
- T = absolute temperature = 25.0ºC = 25 + 273.15 K = 298.15 K
- n = number of moles
Solving for n:
Substituting:

To convert boiling water to steam, that would involve heat of vaporization. The heat of vaporization for water at atmospheric conditions is: ΔHvap = <span>2260 J/g.
Molar mass of water = 18 g/mol
Q = m</span>ΔHvap = (1.50 mol water)(18 g/mol)(<span>2260 J/g) = 61,020 J
Time = Q/Rate = (61,020 J)(1 s/20 J) = 3051 seconds
In order to express the answer in three significant units, let's convert that to minutes.
Time = 3051 s * 1min/30 s = <em>102 min</em></span>
To solve this problem, the dilution equation (M1 x V1 = M2 X V2) must be used. The given values in the problem are M1= 12.0 M, V1= 30 mL, and M2= 0.160 M. To solve for V2,
V2=M1xV1/M2
V2= (12x30)/0.16
V2= 2,250 mL.
The correct answer is 2.25 L.
A: 12 N
B: 150 N
C: 100 N
D: 150 N
E: 220 N
Assuming that the solution is simply an aqueous solution
so that it is purely made of NaClO4 (the solute) and water (the solvent), then
I believe the dissolved species would only be the ions of NaClO4, these are:
Na+
ClO4 -