Answer:
349.22°C
Explanation:
Let the final temperature of the two pieces of metal be x.
Now, the warmer metal which is C u reduces from 475°C to x. Thus Δt for C u is; Δt1 = 475 - x.
The cooler metal Cr increases in temperature from 265°C to x. Thus, it's change in temperature is Δt for Cr is; Δt2 = x - 265.
Now from conservation of energy, the amount of energy leaving the C u metal is equal to the amount of energy entering the Cr metal.
Thus;
q_lost = q_gain
Where;
q_lost = m1•c1•Δt1
q_gained = m2•c2•Δt2
Now, c1 & c2 are the specific heat capacity of C u and Cr respectively.
From online tables, c1 = 0.385 J/g°C and c2 = 0.46 J/g°C
We are given;
m1 = 12g and m2 = 15g
Thus;
12 × 0.385 × (475 - x) = 15 × 0.46 × (x - 265)
2194.5 - 4.62x = 6.9x - 1828.5
6.9x + 4.62x = 2194.5 + 1828.5
11.52x = 4023
x = 4023/11.52
x = 349.22°C
Answer : The formula of the gas produced is,
(phosphine gas)
Explanation :
According to the question, when sodium phosphide is treated with water then it react to give phosphine gas and sodium hydroxide.
The balanced chemical reaction will be:

By Stoichiometry of the reaction we can say that:
1 mole of sodium phosphide reacts with 3 moles of water to give 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Thus, the formula of the gas produced is,
(phosphine gas)
Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer: The black ball will have more mass than the white ball.
Explanation: Density of a substance is defined as the ratio of mass and volume occupied by the substance.
Mathematically,

We are given that the two balls are of same size, which means that the volume of both the balls are same. We are also given that the black ball is more dense than the white ball, which means that the black ball will have more mass.
As, 