Answer:
Length = 2.92 m
Diameter = 0.11 mm
Explanation:
We have
, where:
is the length

We divide the first equation by the second equation to get:


Using this Area, we find the diameter of the wire:



To find the length, we multiply the two equations stated initially:


Answer: Neon is a colorless gas at room temperature: Physical property
At room temperature, mercury is a liquid: Physical property
Apple slices turn brown when exposed to air: Chemical property
Phosphorus will ignite when exposed to air: Chemical property
Explanation:
Physical property is defined as the property of a substance which becomes evident during physical change in which there is alteration in shape, size etc. No new substance gets formed during physical change.
Example: Neon is a colorless gas at room temperature
At room temperature, mercury is a liquid.
Chemical property is defined as the property of a substance which becomes evident during chemical change in which a change in chemical composition takes place. A new substance is formed in these reactions.
Example: Apple slices turn brown when exposed to air: It undergoes oxidation which is a chemical change
Phosphorus will ignite when exposed to air: It undergoes oxidation which is a chemical change
Answer:9.34 A/s
Explanation:
Given
radius of solenoid 
Emf induced 
no of turns per meter n=450
we know Induced EMF is given by

Magnetic Field is given by

thus 
Area of cross-section
where
solving integration we get

where r=distance from axis
R=radius of Solenoid



F = ma = -kx
a = 9.81 m/s²
k = 3430 N/m
m = 70 kg
x = - ma/ k = 0.2m
Answer:
a. 960 W b. One 1 kW room heater
Explanation:
a. The rate of heat conduction P = kA(T₂ - T₁)/d where k = 2 × 0.040 W/m-K = 0.080 W/m-K since the thermal conductivity of glass wool is 0.040 W/m-K and that of the material is twice the thermal conductivity of glass wool, A = area of walls = 120 m², T₁ = outside surface temperature = 5.0 °C, T₂ = inside surface temperature = 18.0 °C and d = thickness of wall = 13.0 cm = 0.13 m
P = kA(T₂ - T₁)/d
= 0.080 W/m-K × 120 m²(18.0 °C - 5.0 °C)/0.13 m
= 9.6 Wm/K × 13 K/0.13 m
= 124.8 Wm/0.13 m
= 960 W
b. The number of 1 kW room heater required will be
n = rate of heat conduction/power of one room heater = 960 W/ 1 kW = 960 W/1000 W = 0.96 ≅ 1
So we need only one 1 kW room heater.