Answer:
1) 1.31 m/s2
2) 20.92 N
3) 8.53 m/s2
4) 1.76 m/s2
5) -8.53 m/s2
Explanation:
1) As the box does not slide, the acceleration of the box (relative to ground) is the same as acceleration of the truck, which goes from 0 to 17m/s in 13 s

2)According to Newton 2nd law, the static frictional force that acting on the box (so it goes along with the truck), is the product of its mass and acceleration

3) Let g = 9.81 m/s2. The maximum static friction that can hold the box is the product of its static coefficient and the normal force.

So the maximum acceleration on the block is

4)As the box slides, it is now subjected to kinetic friction, which is

So if the acceleration of the truck it at the point where the box starts to slide, the force that acting on it must be at 136.6 N too. So the horizontal net force would be 136.6 - 108.3 = 28.25N. And the acceleration is
28.25 / 16 = 1.76 m/s2
5) Same as number 3), the maximum deceleration the truck can have without the box sliding is -8.53 m/s2
The launch velocity of the marble launcher is 34.65 m/s
Given that the launch velocity of marble launcher, launches a 25g marble to a distance of 73 cm (0.73 m) and the marble roll up to 6.2 meters before stopping. The launch height is 20 cm (0.2 m).
The time for landing can be calculated by the second equation of motion formula:
h = ut +
g
Let u = 0
0.2 = 0×t +
× 9.8 × 
= 
= 0.04
t = 0.2s
Now, the launch velocity of the marble launcher can be calculated by:
Speed = Distance / Time
Speed = 
Speed = 
Speed = 34.65 m/s
Therefore, the launch velocity of the marble launcher is 34.65 m/s
Know more about Launch velocity: -brainly.com/question/18883779
#SPJ9
By Considering the vertical distance and both vertical and horizontal final velocity, the time t = 0.45 s and Velocity V = 6.7 m/s
Given that a Veggie meatball with v = 5.0 m/s rolls off a 1.0 m high table.
Height h = 1.0 m
As the ball rolls off the table, it will be fallen under gravity. Where
g = 9.8 m/
Initial vertical velocity
= 0
Initial horizontal velocity
= 5 m/s
Considering the vertical distance, the formula to use to calculate the time will be;
h = ut + 1/2g
1 = 0 + 1/2 x 9.8
1 = 4.9
= 1/4.9
t = 
t = 0.45 seconds
It takes 0.45 seconds to hit the floor if no one sneezes.
To calculate its velocity when it hits the floor, we will need to calculate for both vertical and horizontal final velocity and find the resultant velocity of the two.
Vertical component
=
+ gt
= 0 + 9.8(0.45)
= 4.41 m/s
Horizontal component
=
+ at
but a = 0
= 5 m/s
Final velocity V = 
V = 6.67 m/s
Therefore, it will hit the floor at a velocity of 6.7 m/s
Learn more here: brainly.com/question/5063616
Arterie
cwamus
capillaries
phloprant
veins
piscas
The correct answer to this question is C - Gravity is a force. Gravity
is also an example of a universal law. Well, according to Isaac Newton,
anyway. According to Newton's Law of Universal Gravitation, 'every point
mass attracts every single point mass by a force pointing along the
line intersecting both paths.'
<span />