<h2>
Electric field at the location of the charge is 169.97 N/C</h2>
Explanation:
Electric field is the ratio of force and charge.
Force, F = 6 x 10⁻⁶ N
Charge, q = 3.53 x 10⁻⁸ C
We have

Electric field at the location of the charge is 169.97 N/C
Let us evaluate the given assumptions according to the kinetic theory for an ideal gas.
a.
The motion of one particle is unaffected by other particles unless the particles collide.
TRUE. The particles are in random motion unless they collide.
b.
The forces of attraction among particles keep the particles close together.
FALSE. No forces act between particles except during collision.
c.
Under ordinary conditions, forces of attraction between particles can be ignored.
TRUE.
Answer: Statement b is false because it is not an assumption.
The object that had the most 1000 ton weight has the most momentum
Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1
Answer:
C
Explanation:
C. a system that converts thermal energy into other useful forms of energy