I believe the answer is the mass of the object and the speed at which it is moving.
Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
Answer:
It says that momentum cannot be created or destroyed. Momentum just passes through systems as opposed to just disappearing in thin air. Momentum can be changed to heat or energy.
Explanation:
The answer is A. Further apart and move faster.
Conduction in general is the transfer of energy from molecule to molecule through DIRECT CONTACT. In solids and liquids, the molecules are closer to each other; more so in solids than liquids. This enables them to pass energy more quickly. Gas molecules on the other hand are further apart and move faster because they have space to move more freely. Energy does not easily pass on to the next molecule because of the distance between the molecules.
1900 millimeters thats wht i got