Answer:
Photos are attached. Step wise solution is given.
1. Velocity of air at inlet is calculated.
2.Temperature of air at exit in Kelvin is also calculated.
3.Exit Cross-Sectional area
Best Regards.
Answer:
ρ=962.16kg/m^3
Explanation:
The first thing we must do to solve is to find the mass of the specimen using the weight equation
w = mg
m=w/g
m=0.45/9.81=0.04587kg
To find the volume we must make a free-body diagram on the specimen, taking into account that the weight will go down and the buoyant force up, and the result of that subtraction will be the measured weight value (0.081N).
We must bear in mind that the principle of archimedes indicates that the buoyant force is given by
F = ρgV
where V is the specimen volume and ρ is the density of alcohol = 789kg / m ^ 3
considering the above we have the following equation
0.081=0.45-(789)(9.81m/s^2)V
solving for V
V=(0.081-0.45)/(-789x9.81)
V=4.7673x10^-5m^3
finally we found the density
ρ=m/v
ρ=0.04587kg/4.7673x10^-5m^3
ρ=962.16kg/m^3
Answer:
The surface temperature of the component 54.6 degrees celsius.
Explanation:
Please see attachment.
You connect the motherboard to the astronomical blow up device
Answer:
False
Explanation:
Bella counts products in finished goods inventory and she counts kits in various stages of manufacturing.