Answer:

Explanation:
Hello,
In this case, by considering the given seminormal solution, we infer it is a 0.5-N solution which means that we can obtain the equivalent grams as shown below for the 55 cc (0.055 L) volume:

Next, since sodium carbonate has two sodium ions with a +1 oxidation state each, we can obtain the moles:

Finally, the mass is computed by using its molar mass (106 g/mol)

Regards.
Atomic mass is the answer!!
Explanation: An elements atomic number won’t be able to change
Answer:
Solute concentration will afect the rate of a chemical reaction, because you must work with molarity
Explanation:
I think that solute mass may be it can affect the rate of reaction, if you have more mass in a solute, you will also have more moles.
If you want to know more, you have to consider temperature in the reaction and the presence of catalysts. They all, affect reactions.
The total volume of water that would be removed will be 75 mL
<h3>Dilution equation</h3>
Using the dilution equation:
M1V1 = M2V2
In this case, M1 = 500 mL, V1 = 10.20 M, M2 = 12 M
Substitute:
V2 = 500 x 10.20/12
= 425 mL
The final volume in order to arrive at 12 M HNO3 would be 425 mL from the initial 500 mL. Thus, the total amount of water that will be removed by evaporation can be calculated as:
500 - 425 = 75 mL
More on dilution can be found here: brainly.com/question/7208939
your answer is b hope this helps