C = 12 g
O = 16 g
H = 1 g
<h3>Further explanation
</h3>
Conservation of mass stated that
<em>In a closed system, the masses before and after the reaction are the same
</em>
we can calculate the mass of each atom in the compound :
O in O₂ :
mass O₂ = 32
mass O = 32 : 2 = 16 g
H in H₂O
mass H₂O = 18
mass 2.H + mass O = 18
mass 2.H + 16 = 18
mass 2.H=2
mass H = 1 g
C in CH₄
mass CH₄ = 16
mass C + mass 4.H = 16
mass C + 4.1=16
mass C = 12 g
or we can use formula :
Mass of a single C :

Answer:
An example of engineering material, <em><u>are plastics,</u></em> they are derived from organic, natural materials, such as cellulose, coal, natural gas, salt and, of course, oil. Oil is a complex mixture of thousands of compounds and must be processed before being used.
Explanation:
Plastic production begins with distillation at a refinery, where crude oil is separated into groups of lighter components, called fractions. Each fraction is a mixture of hydrocarbon chains (chemical compounds formed by carbon and hydrogen) that differ in terms of the size and structure of their molecules. One of those fractions, naphtha, is the essential compound for the production of plastic.
Two main processes are used to make plastic: polymerization and polycondensation, and both require specific catalysts. In a polymerization reactor, monomers like ethylene and propylene join to form long polymer chains. Each polymer has its own properties, structure and dimensions depending on the type of basic monomer that has been used.
Answer:
A. It keeps the electrolyte solutions neutral.
Explanation:
The electrons flow from the anode to the cathode and the problem is that the cathode may become too negative. The purpose of the salt bridge is to maintain charge balance because the electrons are moving from one-half cell to the other.
You can pick it up and move it