Answer:
yes water boils at 100 degree Celsius but the boiling point water is different at different place because of the altitude of that place. For example boiling point of water is 96 decree Celsius.
No the 2 solutions don't boils at same time. it's because of their volume.
if the volume is more then it takes more time to boli. and vice versa
A chemical reagent that is used in this experiment is silver nitrate (AgNO3). It is used to distinguish calcium chloride and calcium carbonate. when this reagent is used, silver from silver nitrate reacts with Chloride to calcium chloride and forms silver chloride, making a precipitates of white color.
Answer:
Adding heat and increasing concentration are meant to cause an increase in the rate of a reaction
Explanation:
The rate of a chemical reaction is defined as the number of moles of reactants converted or products formed pee unit time. It is a measure of how quickly the reactants in a given reaction are used up to form products or how quickly products are formed from reactants.
Factors that affect the rate of a chemical reaction include:
1. Nature of reactants
2. Concentration/pressure (for gases) of reactants
3. Temperature of reaction mixture
4. Presence of light
5. Presence of a catalyst
The effect of increasing the concentration of reactants for a given chemical reaction is that the reaction rate will increase. This is so because, according to the collision theory of chemical reactions, the frequency of collision between reactant particles which results in a chemical reaction (effective collisions) will increase when the reactant particles are crowded together in a small space due to an increase in their concentration.
The effect of increasing temperature or adding heat to a reaction is that the reaction rate increases. When the heat is added to a reactant particles, the number of particles with energies greater than or equal to the activation energy (the minimum amount of energy that reactant particles must possess for effective collisions) increases. Also, the average speed of the reactant particles increases resulting in a greater frequency of collision. Hence, the rate of the chemical reaction increases.
Answer : The mass of the water molecule is 4.5 times greater than the mass of the helium atom.
Explanation :
Assumption : The number of water molecules is equal to the number of helium atoms
Given : The mass of water = 4.5 × The mass of helium ........(1)
The mass of Water = Mass of 1 water molecule × Number of water molecule
The mass of Helium = Mass of 1 helium atom × Number of helium atom
Now these two masses expression put in the equation (1), we get
Mass of 1 water molecule × Number of water molecule = 4.5 × Mass of 1 helium atom × Number of helium atom
As per assumption, the number of water molecules is equal to the number of helium atoms. The relation between the mass of water molecule and the mass of helium atom is,
Mass of water molecule = 4.5 × Mass of helium atom
Therefore, the mass of the water molecule is 4.5 times greater than the mass of the helium atom.