To find the temperature it is necessary to use the expression and concepts related to the ideal gas law.
Mathematically it can be defined as

Where
P = Pressure
V = Volume
n = Number of moles
R = Gas constant
T = Temperature
When the number of moles and volume is constant then the expression can be written as

Or in practical terms for this exercise depending on the final temperature:

Our values are given as

Replacing

Therefore the final temperature of the gas is 800K
Answer:
Distance travelled is 7 meters and the displacement is 3 meters
Answer:
0.25m/s
Explanation:
Given parameters
m₁ = 5kg
v₁ = 1.0m/s
m₂ = 15kg
v₂ = 0m/s
Unknown:
velocity after collision = ?
Solution:
Momentum before collision and after collision will be the same. For inelastic collision;
m₁v₁ + m₂v₂ = v(m₁ + m₂)
Insert parameters and solve for v;
5 x 1 + 15 x 0 = v (5 + 15 )
5 = 20v
v =
= 0.25m/s
Answer:
The unit of speed is m/s.
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s