Answer:
Mass of object (m) = 5.102 kg
Explanation:
Given:
Horizontal Force (F) = 50 N
Find:
Mass of object (m) = ?
Computation:
We know that, acceleration due to gravity (g) = 9.8 m/s²
⇒ Horizontal Force (F) = mg
⇒ 50 N = m (9.8 m/s²)
⇒ Mass of object (m) = 50 / 9.8
⇒ Mass of object (m) = 5.102 kg
Mass of object (m) is 5.1 kg (Approx)
Answer:


Explanation:
From the question we are told that
Mass of the aluminum container 50 g
Mass of the container and water 250 g
Mass of the water 200 g
Initial temperature of the container and water 20°C
Temperature of the steam 100°C
Final temperature of the container, water, and condensed steam 50°C
Mass of the container, water, and condensed steam 261 g
Mass of the steam 11 g Specific heat of aluminum 0.22 cal/g°C
a) Heat energy on container
Generally the formula for mathematically solving heat gain

Therefore imputing variables we have

b) Heat energy on water
Generally the formula for mathematically solving heat gain

Therefore imputing variables we have


Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Explanation:
V=40m/s
Vy=V.sina=40.sin20=40 . 0.342=13.68m/s
Vx=V.cosa=40.cos20=40 . 0.766=30.64m/s
Projectile travels during 5 seconds and the ramge becomes:
x=V.t=30.64 . 5=153.2m
Answer:
C. volume of water and temperature
Explanation:
a p e x