<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².
<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>
- Δt = (√2xgxh)/9,8
- Δt = (14√10)/9,8
- Δt ≈ 4,5 s
Answer : The correct option is (D).
Explanation :
Given that,
A track begins at 0 meters and has a total distance of 100 meters. Juliet starts at the 10-meter mark while practicing for a race.
We have to find her position after she runs 45 meters.
From the attached figure,
Let A is the position of Juliet. O is the initial point such that OA = 10 m, AB = 45 m and OP = 100 m.
So, using simple mathematics, it is clear that the position of Juliet after running 45 meters will be 55 m. It is OB in the figure.
So, the correct option is (D) " 55 meters ".
A.the composition of the inner and outer planets, current observations of star formation, and the motion of the solar system I hope this helps
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s
The answer is C hope this helps <span />