Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Basis of the calculation: 100g
For Carbon:
Mass of carbon = (100 g)(0.80) = 80 g
Number of moles of carbon = (80 g)(1 mole / 12g) = 20/3
For Hydrogen:
Mass of hydrogen = (100 g)(0.20) = 20 g
Number of moles of hydrogen = (20 g)(1 mole / 1 g) = 20
Translating the answer to the formula of the substance,
C20/3H20
Dividing the answer,
CH3
The molar mass of the empirical formula is:
12 + 3 = 15 g/mol
Since, the molar mass given for the molecular formula is 30.069 g/mol, the molecular equation is,
C2H6
ANSWER: C2H6
Carbon dioxide and water pretty sure
20 cups of flour, 30 eggs, and 10 cups of sugar
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.