Answer:
Explanation:
Given data:
initial construction co = 0.286 wt %
concentration at surface position cs = 0 wt %
carbon concentration cx = 0.215 wt%
time = 7 hr

for 0.225% carbon concentration following formula is used

where, erf stand for error function




from the table erf(Z) value = 0.751 lie between (z) = 0.80 and z = 0.85 so by inteerpolation we have z = 0.815
from given table



x = 0.002395 mm
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Answer:
both are incorect
Explanation:
2 stroke principal is a mix of gasoline and engine oil a normal gasoline engine does not run on 2 stroke fuel
technician B is also wrong Diesel engines generally generate much higher compersion than gasoline engines
Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa
Answer:
26.7 min
Explanation:
First, we will find the <u>time required to drill each hole</u>:
- N = 300 x 12/0.75
= 1527.7 rev/min
- fr = 1527.7 (0.015) = 22.916 in/min
Formula for <u>distance per hole</u>: 0.5 + A + 1.75
- A = 0.5 (0.75) tan (90-100 / 2) = 0.315 in
- Tm = (0.5 + 0.315 + 1.75) / 22.916 = 0.112 min
Now, we will calculate the <u>time required to draw back the drill form hole</u>:
= 0.112 / 2 = 0.056 min
Time to move between holes = 1.5 / 15 = 0.1 min
For 100 holes, the number of moves between holes = 99
Total time required to drill 100 holes (t):
t = 100 (0.112 + 0.056) + 99 (0.1) = 26.7 min