1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
3 years ago
13

In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by

the correlation Nux=0.035Re0.8xPr1/3 Determine the ratio of the average convection heat transfer coefficient (h) over the entire plate length to the local convection heat transfer coefficient (hx) (h/hx = L) at x = L.
Engineering
1 answer:
zvonat [6]3 years ago
3 0

Answer:

R= 1.25

Explanation:

As given the local heat transfer,

Nu_x = 0.035 Re^{0.8}_x Pr^{1/3}

But we know as well that,

Nu=\frac{hx}{k}\\h=\frac{Nuk}{x}

Replacing the values

h_x=Nu_x \frac{k}{x}\\h_x= 0.035Re^{0.8}_xPr^{1/3} \frac{k}{x}

Reynolds number is define as,

Re_x = \frac{Vx}{\upsilon}

Where V is the velocity of the fluid and \upsilon is the Kinematic viscosity

Then replacing we have

h_x=0.035(\frac{Vx}{\upsilon})^{0.8}Pr^{1/3}kx^{-1}

h_x=0.035(\frac{V}{\upsilon})^{0.8}Pr^{1/3}kx^{0.8-1}

h_x=Ax^{-0.2}

<em>*Note that A is just a 'summary' of all of that constat there.</em>

<em>That is A=0.035(\frac{V}{\upsilon})^{0.8}Pr^{1/3}k</em>

Therefore at x=L the local convection heat transfer coefficient is

h_{x=L}=AL^{-0.2}

Definen that we need to find the average convection heat transfer coefficient in the entire plate lenght, so

h=\frac{1}{L}\int\limit^L_0 h_x dx\\h=\frac{1}{L}\int\limit^L_0 AL^{-0.2}dx\\h=\frac{A}{0.8L}L^{0.8}\\h=1.25AL^{-0.2}

The ratio of the average heat transfer coefficient over the entire plate  to the local convection heat transfer coefficient is

R = \frac{h}{h_L}\\R= \frac{1.25Al^{-0.2}}{AL^{-0.2}}\\R= 1.25

You might be interested in
8. Describe and correct the error in stating the domain. Xf * (x) = 4x ^ (1/2) + 2 and g(x) = - 4x ^ (1/2) The domain of (f + g)
konstantin123 [22]

Answer:

hi

Explanation:

4 0
3 years ago
Earth completes one full ____ on its axis every 24 hours
mars1129 [50]

Answer:

rotation

Explanation:

I just answered this!

7 0
2 years ago
Read 2 more answers
True or false a critique of hazwoper incidents that have occurred in the past year should not be included in hazwoper 8 hour ref
Jobisdone [24]

Answer:

False

Explanation:

No matter if something happened in the past year or so, it still should be included for safety reasons so it wont happen again

7 0
3 years ago
Why is logging done during drilling?
Solnce55 [7]

Answer:

Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA). ... In these situations, the LWD measurement ensures that some measurement of the subsurface is captured in the event that wireline operations are not possible

8 0
2 years ago
Given the vector current density J = 10rho2zarho − 4rho cos2 φ aφ mA/m2:
Xelga [282]

Answer:

(a) Current density at P is J(P)=180.\textbf{a}_{\rho}-9.\textbf{a}_{\phi} \ (mA/m^2)\\.

(b) Total current I is 3.257 A

Explanation:

Because question includes symbols and formulas it can be misunderstood. In the question current density is given as below;

J=10\rho^2z.\textbf{a}_{\rho}-4\rho(\cos\phi)^2\textbf{a}_{\phi}\\

where \textbf{a}_{\rho} and \textbf{a}_{\phi} unit vectors.

(a) In order to find the current density at a specific point <em>(P)</em>, we can simply replace the coordinates in the current density equation.  Therefore

J(P(\rho=3, \phi=30^o,z=2))=10.3^2.2.\textbf{a}_{\rho}-4.3.(\cos(30^o)^2).\textbf{a}_{\phi}\\\\J(P)=180.\textbf{a}_{\rho}-9.\textbf{a}_{\phi} \ (mA/m^2)\\

(b) Total current flowing outward can be calculated by using the relation,

I=\int {\textbf{J} \, \textbf{ds}

where integral is calculated through the circular band given in the question. We can write the integral as below,

I=\int\{(10\rho^2z.\textbf{a}_{\rho}-4\rho(\cos\phi)^2\textbf{a}_{\phi}).(\rho.d\phi.dz.\textbf{a}_{\rho}})\}\\\\I=\int\{(10\rho^2z).(\rho.d\phi.dz)\}\\\\\\

due to unit vector multiplication. Then,

I=10\int\(\rho^3z.dz.d\phi

where \rho=3,\ 0. Therefore

I=10.3^3\int_2^{2.8}\(zdz.\int_0^{2\pi}d\phi\\I=270(\frac{2.8^2}{2}-\frac{2^2}{2} )(2\pi-0)=3257.2\ mA\\I=3.257\ A

4 0
3 years ago
Other questions:
  • (a) Draw the Moore finite state machine (FSM) of an electronic combination lock with a RESET button, two number buttons (0 and 1
    12·1 answer
  • In a food processing facility, a spherical container of inner radius r1 = 40 cm, outer radius r2 = 41 cm, and thermal conductivi
    12·1 answer
  • "A fluid at a pressure of 7 atm with a specific volume of 0.11 m3/kg is constrained in a cylinder behind a piston. It is allowed
    6·1 answer
  • 1. A copper block of volume 1 L is heat treated at 500ºC and now cooled in a 200-L oil bath initially at 20◦C. Assuming no heat
    10·1 answer
  • QUESTIONS
    12·1 answer
  • A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with fri
    13·1 answer
  • A minor road intersects a major 4-lane divided road with a design speed of 50 mph and a median width of 12 ft. The intersection
    13·1 answer
  • A fluid at 300 K flows through a long, thin-walled pipe of 0.2-m diameter. The pipe is enclosed in a concrete casing that is of
    10·1 answer
  • Which statement is true about the future of space travel?
    15·1 answer
  • Can you help me with this
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!