Think it would be distillation
<span>4FeS2 + 11O2 = 2Fe2O3 + 8SO2</span>
Percent yield is calculated as the actual yield divided by the theoretical yield multiplied by 100.
Actual yield = 55 g ( 1 mol / 159.69 g ) = 0.34 mol Fe2O3
To find for the theoretical yield, we first determine the limiting reactant.
100 g O2 ( 1 mol / 32 g) = 3.13 mol O2
200 g FeS2 (1 mol / 119.98g) = 1.67 mol FeS2
Therefore, the limiting reactant is O2.
Theoretical yield = 3.13 mol O2 ( 2 mol Fe2O3 / 11 mol O2 ) = 0.57 mol Fe2O3
Percent yield = (0.34 mol / 0.57 mol) x 100 = 59.74%
The s orbitals are not symmetrical in shape is a FALSE statement.
An s orbital is so symmetric, more specifically spherically symmetric that it looks the same from all directions.
- The atomic orbitals in the atoms of elements differ in shape.
In essence, the electrons they describe have varying probability distributions around the nucleus. The spherical symmetry of s orbitals is evident in the fact that all orbitals of a given shell in the hydrogen atom have the same energy.
- All s orbitals are spherically symmetrical. Put simply, an electron that occupies an s orbital can be found with the same probability at any orientation (at a distance) from the nucleus.
The s orbitals are therefore represented by a spherical boundary surface which is a surface which captures a high proportion of the electron density.
Read more:
brainly.com/question/5087295
Answer:
A) The catalyzed reaction passes through C.
Explanation:
<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>